Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

CUET PG MCA Previous Year Questions (PYQs)

CUET PG MCA Vector PYQ


CUET PG MCA PYQ
If $\vec{a}$ and $\vec{b}$ are two unit vectors such that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are perpendicular to each other, then the angle between $\vec{a}$ and $\vec{b}$ is:





Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
Let $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a} \times \vec{c})+\vec{b}=0$ and $\vec{a}.\vec{c}=4$, then $|\vec{c}|^2$ is equal to 





Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
If $\vec{a}$, $\vec{b}$, $\vec{c}$ and $\vec{d}$ are the unit vectors such that $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d})=1$ and $(\vec{a}.\vec{c})=\frac{1}{2}$, then 





Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are unit vectors, then $|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2 $ does not exceed





Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2022 PYQ

Solution


CUET PG MCA PYQ
If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$, $\vec{a}.\vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then $\vec{b}$ is equal to 





Go to Discussion

CUET PG MCA Previous Year PYQCUET PG MCA CUET 2022 PYQ

Solution



CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

CUET PG MCA


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...